MATHEMA

9546359990

Ram Rajya More, Siwan

XIth, XIIth, TARGET IIT-JEE (MAIN + ADVANCE) & COMPETITIVE EXAM. FOR XII (PQRS)

AREA OF BOUNDED REGIONS

& Their Properties

	CONTENTS
Key Concept-I	***************************************
Exercise-I	***************************************
Exercise-II	***************************************
Exercise-III	***************************************
	Solutions of Exercise
Page	***************************************

By: Dir. Firoz Ahmad

THINGS TO REMEMBER

- Let f(x) be a continuous function defined on [a, b]. Then, the area bounded by the curve y = f(x), 1. the x-axis and the ordinates x = a and x = b is given by $\int_{a}^{b} f(x) dx$ or, $\int_{a}^{b} y dx$
- If the curve y = f(x) lies below x-axis, then the area bounded by the curve y = f(x), the x-axis and 2. the ordinates x = a and x = b is negative. So, area is given by $\left| \int y \, dx \right|$
- The area bounded by the curve x = f(y), the y-axis and the abscissae y = c and y = d is given by 3. $\int f(y) dy or, \int x dy$

EXERCISE-1

- Let f(x) be a continuous function defined on [a, b]. Then, the area bounded by the curve y = f(x), 1_{∞} the x-axis and the ordinates x = a and x = b is given by $\int_{0}^{b} f(x) dx$ or, $\int_{0}^{b} y dx$
- If the curve y = f(x) lies below x-axis, then the area bounded by the curve y = f(x), the x-axis and 2. the ordinates x = a and x = b is negative. So, area is given by $\int y dx$
- The area bounded by the curve x = f(y), the y-axis and the abscissae y = c and y = d is given by 3. $\int f(y) dy or, \int x dy$
- Find the area of the region included between the parabola $y = \frac{3x^2}{4}$ and the line 3x 2y + 12 = 0. 4.
- Find the are bounded by the curve $x^2 = 4y$ and the straight line x = 4y 2. 5.
- Find the area of the region enclosed by the parabola $y^2 = 4ax$ and the chord y = mx. 6.
- Find the area of the region included between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$, where a > 0. 7.
- Find the area of the region $\{(x, y) : x^2 \le y \le x.$ 8.
- 9. Find the area of the region $[(x, y) : x^2 \le y \le |x|]$.
- Find the area of the region $[(x, y): 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2]$. 10.
- Find the area bounded by the curve $y^2 = 4ax$ and the lines y = 2a and y-axis. 11.
- Find the area bounded by the curve $y^2 = 4a^2 (x 1)$ and the lines x = 1 and y = 4a. 12.
- Find the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{k^2} = 1$.

- 14. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the straight line $\frac{x}{a} + \frac{y}{b} = 1$.
- 15. Find the area of the region $\{(x, y) : x^2 + y^2 \le 1 \le x + y\}$.
- 16. Find the area of the region $\{(x, y) : y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$.

Or.

Find the area of the circle $4x^2 + 4y^2 = 9$ which is interior to the parabola $x^2 = 4y$.

- 17. Find the area of the region $\{(x, y): x^2 + y^2 \le 2ax, y^2 \ge ax, x \ge 0, y \ge 0\}$.
- 18. Find the area of the region enclosed between the two circles $x^2 + y^2 = 1$ and $(x 1)^2 + y^2 = 1$.
- 19. Using integration, find the area of the region bounded by the line 2y = -x + 8, x-axis and the lines x = 2 and x = 4.
- 20. Using integration, find the area of the triangle ABC whose vertices have coordinates A (2, 5), B (4, 7) and C (6, 2).
- 21. Complete the area bounded by the line x + 2y = 2, y x = 1 and 2x + y = 7.
- 22. Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + |x + 1|, x = -3, x = 3, y = 0.
- 23. Sketch the graph y = |x + 1|. Evaluate $\int_{-3}^{1} |x + 1| dx$. What does this value represent on the graph?
- 24. Draw a rough sketch of the curves $y = \sin x$ and $y = \cos x$ as x varies from 0 to $\frac{\pi}{2}$ and find the area of the region enclosed by term and x-axis.
- 25. Find the area bounded by the curvey = $\sin x$ between x = 0 and $x = 2\pi$.
- 26. Sketch the region common to the circle $x^2 + y^2 = 16$ and the parabola $x^2 = 6y$. Also, find the area of the region using integration.

Or,

Using integration, find the area of the region $\{(x, y) : x^2 + y^2 \le 16, x^2 \le 6y\}$.

- 27. Prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of the square bounded by x = 0, y = 0, x = 4 and y = 4 into three equal parts.
- 28. If the area enclosed between the curves $y = ax^2$ and $x = ay^2$ (a > 0) is 1 square unit, then find the value of a.
- 29. Find the area of the region bounded by the line y = 3x + 2, the x-axis and the gradinates x = -1 ad x = 1.
- 30. Find the area bounded by the curve y = x |x|, x-axis and the ordinates x = -3 and x = 3.
- 31. Make a rough sketch of the graph of the function $y = 4 x^2$, $0 \le x \le 2$ and determine the area enclosed by the curve, the x-axis and the line x = 0 and x = 2.
- 32. Sketch the graph of $y = \sqrt{x+1}$ in [0, 4] and determine the area of the region enclosed by the curve,

By: Dir. Firoz Ahmad

the x-axis and the lines x = 0, x = 4.

- Draw a rough sketch of the graph of the curve $\frac{x^2}{4} + \frac{y^2}{9} = 1$ and evaluate the area of the region under the curve and above the x-axis.
- Find the area of the region $\left\{ (x,y) : \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \le \frac{x}{a} + \frac{y}{b} \right\}$.
- 35. Using integration, find the area of the region bounded by the triangle whose vertices area (2, 1), (3, 4) and (5, 2).
- 1, y = 3x + 1 and x = 4.
- Find the area of the region between the circles $x^2 + y^2 = 4$ and $(x 2)^2 + y^2 = 4$. 37.
- Sketch the graph y = |x 5|. Evaluate $\int |x 5| dx$. What does this value of the integral represent on the graph.
- Sketch the graph y = |x + 3|. Evaluate $\int_{-\infty}^{\infty} |x + 3| dx$. What does this integral represent on the 39. graph?
- Draw a rough sketch of the curve $y = \frac{x}{\pi} + 2 \sin^2 x$ and find the area between the x-axis, the curve 40. and the ordinates x = 0 and $x = \pi$.
- Find the area bounded by the curve $y = \cos x$, x-axis and the ordinates x = 0 and $x = 2\pi$. 41.
- Make a rough sketch of each of the following curves and determine the area of the region bounded by the curve and the axes:

(i)
$$y = \sin 2x, \ 0 \le x \le \frac{\pi}{2}$$

(ii)
$$y = \cos^2 x$$
, $0 \le x \le \frac{\pi}{2}$

(iii)
$$y = \cos 2x, 0 \le x \le \frac{\pi}{4}$$

(iv)
$$y = \cos 3x$$
, $0 \le x \le \frac{\pi}{6}$

(v)
$$y = \sin^2 \frac{x}{2}, 0 \le x \le \frac{\pi}{2}$$

(vi)
$$y = \sin^2 x$$
, $0 \le x \le \frac{\pi}{4}$

(vii)
$$y = \sin^2 x, \ 0 \le x \le \frac{\pi}{2}$$

- Find the area common to the circle $x^2 + y^2 + 16a^2$ and the parabola $y^2 = 6$ ax.
- Find the area, lying above x-axis and included between the circle $x^2 + y^2 = 8x$ and the parabola y^2 = 4x.
- Prove that the area common to the two parabolas $y = 2x^2$ and $y = x^2 + 4$ is $\frac{32}{3}$ sq. units.

- 46. Compute the area of the figure bounded by the straight lines x = 0, x = 2 and the curves $y = 2^x$, y $=2x-x^2$
- Find the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the ordinates x = ae and x = 0, where $b^2 = a^2$ $(1 - e^2)$ and e < 1.
- Find the area of the region enclosed by the parabola $x^2 = y$ and the line y = x + 2. 48.
- Make a sketch of the region given below and find its area using integration. $\{(x, y): 0 \le y \le x^2 + 3; 0 \le y \le 2x + 3; 0 \le x \le 3\}$
- 50. Using integration, find the area of the region bounded by the line y 1 = x, the x-axis and the ordinates x = -2 and x = 3.
- Find the area bounded by the lines y = 4x + 5, y = 5 x and 4y = x + 5. 51.
- Find the area of the region enclosed between the two curves $x^2 + y^2 = 9$ and $(x 3)^2 + y^2 = 9$. 52.
- Using integration, find the area of the region enclosed between the circles $x^2 + y^2 = 4$ and $(x 2)^2$ $+ y^2 = 4.$
- Using integration, find the area of the following region: $\left\{ (x,y): \frac{x^2}{9} + \frac{y^2}{4} \le 1 \le \frac{x}{3} + \frac{y}{2} \right\}$

EXERCISE-2

- If the area above the x-axis, bounded by the curves $y = 2^{kx}$ and x = 0, and x = 2 is $\frac{3}{\log_2 2}$, then the 1. value of k is
- (a) 1/2 (a) 1/2 (b) 1 (c) -1 (d) The area included between the parabolas $y^2 = 4x$ and $x^2 = 4y$ is (in square units) 2.
- The area bounded by the curve $y = log_e x$ and x-axis and the straight line x = e is 3.
 - (c) $1 \frac{1}{6}$ sq. units (d) $1 + \frac{1}{6}$ sq. units (a) e sq. units (b) 1 sq. units
- The area bounded by $y = 2 x^2$ and x + y = 0 is 4.
 - (a) $\frac{7}{2}$ sq. units (b) $\frac{9}{2}$ sq. units (c) 9 sq. units (d) none of these
- The area bounded by the parabola $x = 4 y^2$ and y-axis, in square units, is 5.
- (a) $\frac{3}{32}$ (b) $\frac{32}{3}$ (c) $\frac{33}{2}$ (d) $\frac{16}{3}$
- If A_n be the area bounded by the curve $y = (\tan x)^n$ and the lines x = 0, y = 0 and $x = \pi/4$, then for
 - (a) $A_n + A_{n-2} = \frac{1}{n-1}$ (b) $A_n + A_{n-2} < \frac{1}{n-1}$ (c) $A_n A_{n-2} = \frac{1}{n-1}$ (d) none of these
- The area enclosed between the curves $y = \log_e(x + e)$, $x = \log_e(\frac{1}{v})$ and the x-axis is

By : Dir. Firoz Ahmad

8. 9.	(a)	area bounded by the 2 sq. units	 (b) 1 curves y = sin x between (b) 4 sq. units parabola y² = 4ax and x² 	(c) 4 the ordinates x = 0, x = (c) 3 sq. units $c = 4av$ is	(d) none of theseπ and the x-axis is(d) 1 sq. units		
10	(a)	$\frac{8a^3}{3}$	(b) $\frac{16a^2}{3}$	(c) $\frac{32a^2}{3}$	(d) $\frac{64a^2}{3}$		
10. The area bounded by the parabola $y^2 = 4ax$, latusrecturm and x-axis is							
	(a)	0	(b) $\frac{4}{3}$ a ²	(c) $\frac{2}{3}$ a ²	(d) $\frac{a^2}{3}$		
11.	1. The area of the region $\{(x, y) : x^2 + y^2 \le 1 \le x + y\}$ is						
	(a)	$\frac{\pi}{5}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{2} - \frac{1}{2}$	(d) $\frac{\pi^2}{2}$		
12.							
	(a)		25	(c) $\frac{\pi}{18}$	(d) $\frac{9}{2}$		
13.	The a	area between x-axis a	nd curve $y = \cos x$ when	$0 \le x \le 2\pi$ is			
14.	` /	0 area bounded by the c	(b) 2 curve $y = 4x - x^2$ and the	(c) 3 x-axis is	(d) 4		
	(a)	$\frac{30}{7}$ sq. units	(b) $\frac{31}{7}$ sq. units	(c) $\frac{32}{3}$ sq. units	(d) $\frac{34}{3}$ sq. units		
15.	The area of the region (in square units) bounded by the curve $x^2 = 4y$, line $x = 2$ and x-axis is						
16.	(a)	1	(b) $2/3$ urve $y^2 = 8x$ and $x^2 = 8y$	(c) 4/3	(d) 8/3		
	(a)	$\frac{16}{3}$ sq. units	(b) $\frac{3}{16}$ sq. units	(c) $\frac{14}{3}$ sq. units	(d) $\frac{3}{14}$ sq. units		
7,	The area bounded by the y-axis, $y = \cos x$ and $y = \sin x$ when $0 \le x \le \frac{\pi}{2}$ is						
	(a) 2	$2(\sqrt{2}-1)$	(b) $\sqrt{2} - 1$	(c) $\sqrt{2} + 1$	(d) $\sqrt{2}$		